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THE RAPID GROWTH OF A VAPOUR BUBBLE 
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Abstract-The rapid growth of vapour bubbles at a liquid-solid interface, as in boiling liquids, is des- 
cribed by a self-similar solution. A bubble grows as a hemisphere, the square of the radius increasing 
proportionally with time, while a thin layer of liquid is left on the solid under the bubbte. Evaporation 
from this layer contributes to the growth rate and creates a dry area at its eentre. The theory is illustrated 
with some experimental results. In the Appendix an analysis is presented of the boundary layer on the solid 
surface outside the bubble. It is shown that separation of this boundary layer does not occur, which explains 

the presence of the microlayer. 

NOMENCLATURE 

heat diffusivity [m2s- ‘1; 
specific heat [Jkg-‘K-l] ; 
dimensionless parameter ; 
modified stream function ; 
acceleration of gravity [ms- 2] ; 
microlayer thickness [m] ; 
original microlayer thickness [m] ; 
boundary-layer thickness [m] ; 

asiai ; 
dimensionless stream function ; 

CAT, - T,)IL; 
growth constant [ms-*] ; 

PliP” ; 
latent heat of evaporation [Jkg- ‘I; 

&!A,; 
unit normal ; 
pressure in liquid (Nm - ‘1; 
ambient pressure [Nm-‘] ; 
pressure in vapour [Nm- ‘1; 
Prandtl number ~,/a,; 
dimensionless liquid pressure ; 
dimensionless vapour pressure ; 
hemispherical bubble radius [m] ; 
nucleation cavity radius [m] ; 

t Present address: Dept. of Physics. Eindhoven Uni- 
versity of Technology, The Netherlands. 

dry area radius [m] ; 
Reynolds number k’pv, ; 
bubble surface [m2] ; 
time [s] ; 
temperature [K] ; 
saturation temperature [K] ; 
initial temperature [K] ; 
liquid velocity [ms-‘1 ; 
bubble volume [m3] ; 
dimensionless liquid velocity : 
dimensionless constant ; 
spherical coordinate [m] ; 
spherical coordinate ; 
cylindrical coordinate [m] ; 
cylindrical coordinate [m] ; 
dimensionless spherical coordinate ; 

dimensionless cylindrical coordinates ; 

dimensionless dry area radius ; 
dimensionless microlayer thickness; 
dimensionless microlayer thickness ; 
heat conductivity [Wm- 1 K- ’ f ; 
dimensionless time ; 
dimensionless evaporation time of 
microlayer ; 
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8, dimensionless temperature ; 

VI> kinematic viscosity [m2s-‘1 ; 

PV density [kg rnp3] ; 

P:? vapour density at Ti [kg m-3] ; 

PW vapour density at To [kg m-3] ; 

fl, surface tension [Nm- ‘1. 

Subscripts 

s, 
f , 
0, 

solid ; 
liquid ; 
vapour. 

1. INTRODUCTION 

IN BOILING liquids bubbles grow at the heat- 
ing surface where they nucleate from pits and 
scratches, as described by Bankoff [f]. Until 
recently bubble growth theories were available 
only for spherical bubbles in an infinite liquid 
medium, for example those of Forster and 
Zuber 121, Plesset and Zwick [3], 3irkhoff et ai. 
[4] and Striven [5]. For lack of a more appro- 
priate theory, they were used to evaluate 
experiments on bubble growth at the heating 
surface, as in the paper by Cole and Shulman [6]. 

However, the experiments carried out by 
Moore and Mesler [7] show that under a 
bubble growing on a solid surface a thin layer 
of liquid is present. This so-called microlayer, 
which influences bubble growth was observed 
directly by Sharp [8], Torikai [9] and in our 
own experiments. To detect the microlayer 
we used a transparent heating surface fitted 
with a glass prism to exploit the effect of total 
reflection, in combination with high-speed 
photography. This is similar to that described by 
Torikai [9]. The role of the microlayer in 
bubble growth was successfully demonstrated 
in a paper by Cooper [lo] based on a series of 
experiments, using tiny resistance thermometers 
on the heating surface, reported by Cooper and 
Lloyd [ 111. The results on microlayer thickness 
obtained in our work, which was carried out in 
the same period, agree with the theoretical 
value which will be derived here and also confirm 
the results obtained by Cooper and Lloyd [ll], 

although the two experimental techniques are 
essentially different. This point is of interest 
because Sharp [8] and more recently also 
Jawurek [12] who both used optical inter- 
ference methods, found a thickness which 
appears to be at least one order of magnitude 
smaller. 

In this analysis of bubble growth at the 
heating surface we will start from a more 
genera1 consideration of the problem structure. 
This will allow us to simplify many aspects of 
the problem then confronting us, to avoid 
unnecessary approximations, and to improve 
on Cooper’s [lo] not entirely satisfactory 
treatment of both microlayer formation and 
evaporation. Taking into account the heat 
content of the microlayer liquid, which was 
neglected by Cooper [lo], we can show that 
this source of heat governs bubble growth, 
although, paradoxically, total microlayer eva- 
poration requires a large amount of heat to be 
withdrawn from the solid, a conclusion which 
is also verified experimentally. These findings 
explain why the thermal properties of the solid 
hardly inlluence the bubble growth rate, a 
result inferred already by Sernas and Hooper 
[13] on the basis of their experimentai results. 
Owing to neglect of the heat content of the 
microlayer liquid, Cooper’s [lo] expressions 
for the bubble growth rate are incorrect, even 
in the extreme case analysed in his paper, and are 
not therefore the upper and lower limits for the 
growth rate to be expected in intermediate cases. 

2. GROWTH HISTORY OF A BUBBLE 

During nucleation and initial growth the 
pressure inside a bubble is practically equal to 
the saturation pressure at the prevailing super- 
heat. A nucleation radius r, requires a certain 
superheat, which is determined by the surface 
tension excess pressure. Taking terms (pI - pL)/p, 

to be equal to 1, we can write 

PbL 20 
P” - p(KJ) = -p(Tt - T,) = -. 

TI 
(1) 

r, 

When for a spherical bubble the radius rb 
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exceeds rC the surface tension pressure decreases 
and the difference between the excess vapour 
pressure and the surface tension pressure can 
drive growth. For such a spherical bubble the 
initial growth has been described by Plesset 
and Zwick [3]. We use their arguments here in 
a slightly modified form. The Rayleigh equation 

2 

d2rb 
+ ‘bx (2) 

can be integrated to give 

(3) 

A constant growth rate will be approached but 
cannot be sustained. The heat which should 
have gone into the bubble therefore as latent 
heat is proportional to t3, increasing more 
rapidly than the volume of liquid ri(a,t)* + t3 
from which heat could be withdrawn. The 
temperature and the vapour pressure therefore 
decrease, and thereby also the growth rate. 
Ultimately the temperature in the bubble will 
hardly differ from the saturation temperature 
TO, the vapour density then being practically 
equal to p,,, but at least for some time the 
dynamical excess pressure is nevertheless still 
large compared with pressure effects of surface 
tension and gravity. The growth rate asymptotic- 
ally approaches a value which is governed by 
heat transport to the bubble during this so- 
called stage of rapid growth.? For a spherical 
bubble this form of growth was described by 
Birkhoff et al. [4]. As we will see the Reynolds 
number R has a constant large value. The 
successive stages of growth are also discussed 
in a numerical study by Waldman and Houghton 

v41. 

t The term rapid growth is used because the volumetric 
growth rate is highest during this growth phase. Note that 
this is not true for the linear growth rate, which is highest 
during initial growth. 

In the problem of bubble growth at a solid- 
liquid interface these different stages of growth 
can also be distinguished. The beginning and 
end of the stage of rapid growth are determined 
by the strong inequalities in Table 1. To 

Table 1. Conditions for self-similar solution 

Original form Form for growth rb = ktf 

T, - T, 
p-1 

p,k4 

T, - T, 
8 $ CT1 - T&i 

0 

<<l 

sat 

P,<p. 
P" 

Plvb ~ 1 

P" - P(a) 

describe it we can use a number of unrestrictive 
simplifying assumptions, neglecting vapour vis- 
cosity, pressure differences in the bubble and 
others which are discussed in detail by Plesset 
and Zwick [ 31. 

For the case of uniform initial superheat it can 
be shown that the problem of rapid growth is 
simpler than expected. When we use spherical 
polar coordinates r, 9 and cp, of which cp does 
not occur owing to symmetry, it is found that 
the number of independent variables is two and 
not three, as r and t occur in a certain combina- 
tion, 

a = rJkt* (4) 

only. A self-similar solution with independent 
variables a and 9 can describe rapid growth. 
The governing differential equations are the 
r and 9 components of the Navier-Stokes 
equation in the liquid, the heat diffusion 
equation in the liquid and the solid, supple- 
mented by a number of homogeneous boundary 
and symmetry conditions. We further have the 
heat balance which requires that all heat 
conducted to the bubble surface at temperature 
TO is used for the evaporation of liquid and 
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therefore controls the rate of vapour generation 
and thus of bubble growth. 

To establish that these equations have a self- 
similar solution the independent and dependent 
variables shown in Table 2 must be substituted 

Table 2. Variables for self-similar solution 
-.-_. 

Original variable Self-similar variable 

t 

r 

9 9 

“, w,(a, 9) = $ 
i 

wda, 9) = % 

P - P(K),) Qta, _g) = (Pzpo)r 
p,k’ 

PC - P(W) 

(2) 

(3) 

The surface is given by 

r = /&a,(9) = r,*(S, t) (6) 

in the I, 9, t system of coordinates, the bubble 
clearly grows pro~o~ionally to t+ 
Normalizing the shape factor such that 

cl*(O) = 1 (7) 

we obtain k as the growth constant in the 
direction 9 = 0, which can be used to 
define the bubble Reynolds number 

R =z r;(O, t) didt jrb*(O, t,, = k2 ~-.-. 
2% vi 

(8) 

which is constant. As a result of the simplify- 
ing assumptions the elf-similar solution for 
rapid growth is valid only when a number of 
conditions are fulfilled. These have been 
worked out for growth proportional to t4 
in Table 1, where rb = $(O, t). See also Fig. 1 
which shows the phase of rapid growth for 
two cases. 

In the following we shall analyse the phase of 
rapid growth under the idealized conditions that 
solid and liquid are uniformly superheated at 
equal temperatures and no heat is generated in 
the solid. In section 6 we shall see how the 
results of this analysis can be applied to nucleate 
boiling. 

into the equations. At the same time it is 
assumed that the bubble surface can be des- 
cribed in the ~1,s system. Doing so, we find that 
refo~ulation in terms of a and 9 and functions 
of these is possible, as the variable t disappears 
from all equations and conditions. The equa- 
tions obtained in this way are still too difficult 
to soive directly and are therefore not reproduced 
here. On this basis some conclusions can be 
drawn. 

(1) The bubble has a fixed surface CY = a&9) in 
the a, 9 system which implies that the bubble 
will not change its shape during rapid 
growth. 

3. FLOW FIELD AND SHAPE OF THE BUBBLE 

When the Reynolds number defined in the 
previous section has a large value, the local 
volume increase associated with the evaporation 
of liquid into the bubble will cause liquid flow 
resembling inviscid flow, except in a thin layer 
on the solid surface where a viscous boundary 
layer develops to satisfy the non-slip condition. 
The inviscid flow in the main region will be 
uniformly radial, as there is no preferred 
direction for such flow in this situation, and the 
bubble will therefore grow in the form of a 
hemisphere with radius rr,. Under the bubble a 
thin layer of liquid, the microlayer, remains on 
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10.’ 10’6 10-5 lO-4 10." 1O-2 10-l I IO 

Bubble radius, m 

IOF - 
Nucleotlon 

I 
I 

Bubble rodm. m 

FIG. 1. Pressure effects calculated for bubble growth following rb = kt*. 
Bubble in n-heptane dt a uniform superheat of 17.5 K, boiling point 329 K 
at a pressure of 18.’ mm Hg = 24.6 kN/m2, and a bubble at 4 K superheat. 

1. 

2. 

3. 

4. 

5. 

6. 

superheat excess pressure p&T, (Tt - T,); 

ambient pressure p( co) ; 

dynamical excess pressure p,k4/8ri ; 

surface tension excess pressure 2u/r,; 

pressure difference across bubble due to gravity p,grb; 

excess pressure in bubble p” - p(a), qualitatively. 
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FIG. 2. Shape of the growing bubble. 

Broken line indicates thickness of the liquid layer at each 
point before being decreased by evaporation. 

the solid, as shown in Fig. 2. The hemisphere 
grows as 

rb = kt”. (9) 

It can be verified that the liquid outside 
the bubble will be accelerated everywhere 
during the initial stage of growth when rb 
is proportional to t. During this initial stage 
flow reversal cannot occur therefore, and a 
boundary layer type of flow is established. 
During the stage of rapid growth when the 
growth rate approaches the value corresponding 
to rb = kt*, the acceleration is negative in a 
thin shell surrounding the bubble, 1 < (rjrb) < 
23, as can be seen from the Navier-Stokes 
equation applied to the main stream region : 

(10) 

As the flow in the boundary layer, compared 
with the main flow, is further decelerated by 
viscous forces, flow reversal at this stage would 
have to begin by separation of the boundary 
layer in the region 

1<$<2 (l<a3<2) 
‘b 

where the flow must overcome a pressure 
increase. We will show in the appendix that 
separation does not occur: Microlayer forma- 
tion is possible during rapid growth. 

The amount of liquid captured under the 
bubble is determined by the displacement 

thickness of the boundary layer at 7 = rb (In 
the following cylindrical coordinates F, f, 4 will 
be used in the description of the microlayer.) 

As the bubble will not change its shape, the 
thickness of the microlayer at f = rb must be 
proportional to the bubble radius. It must 
further be proportional to R-; because it is 
derived from a boundary-layer thickness. We 
have therefore 

h,(r,) = r,Z,R-*. (11) 

Although some residual flow is possible where 
the liquid is captured under the bubble, it will 
be stopped by viscous forces, and we will 
assume in the present analysis that the liquid 
is at rest under the bubble and that the thickness 
h, will change through evaporation of liquid 
only. The value of Z, is calculated in the Appen- 
dix. 

4. EVAPORATION OF THE MICROLAYER, 
BUBBLE GROWTH RATE 

In the calculation of microlayer evaporation 
a useful simplification is possible. The transient 
heat flux which occurs when, upon becoming 
part of the microlayer under the bubble, the 
liquid is suddenly exposed to evaporation can 
be shown to be a factor Rt larger in the z” 
direction than in the P-direction. Thus, we 
assume heat conduction to occur in the z” 
direction only. We must now describe the 
evaporation of a layer of liquid, at a position 
r” = Jr, of thickness h which was initially 

at time 

h = h,(r”,) (12) 

t, = r”fk-2 (13) 

when evaporation begun as a result of a heat 
flux to the vapour liquid interface where the 
temperature had suddenly dropped from 
Ti to T,. 

In a dimensionless formulation, chosen such 
that the smallest number of parameters will 
appear, the problem can be stated as follows. 



New variables presented in Table 3 have been 

Table 3. Dimensionless variables and parameters for the 
calculation of microlayer evaporation 

Variables Dimensionless variables 

layer thickness h 

time t - t, 

b = h,‘h, 

position in liquid i 

position in solid Z 
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ae, _ w 
aT -&jF q<o (20) 

@ _=J ae, 
dz 0 afi V=8’ 

(21) 

These equations can be solved, although in 
general only numerically, to obtain /? = j?(r, J, 
MZTt), which then yields the value rd = z,(J, 
MH-*) for which /I = 0, corresponding to 
complete evaporation. The vapour production 
per unit surface area as a function of z is 

PI dh 

P” dt 

_K3a,=_a,KRfdfl 
dz h, F,z,dz’ (22) 

With this function j? the situation at the 
microlayer under the bubble at any given 
moment can be described. Going from the hemi- 
spherical surface towards the bubble centre the 
evaporation process is further developed, until 
at a radius rd = adrb the solid surface is dry. The 
dimensionless position E1 = Fr/r, and r are 
related by (9) (11) (12) and the definition of r 
in Table 3 

1 1 
r=2pzh2 $- 

( > 
1 . (23) 

The total evaporation at the microlayer is then 
given by 

temperature T 
T - TO 

6=---- 
TI - T, 

Parameters 

MC; 
I 

J= 
c,(T, - T,) 

L 

defined with the help of the knowledge about 
the self-similarity of the solution 

Ol -r 8, = 1 at r = 0 (14) 

/?=l at z=O (15) 

0,=0 at q=fi (16) 

8, + 1 when ij+ -_CO (17) 

= -2na,r,KPZ,R+ 
s 

$(l + 2PZ,2z)- 8 dz. (24) 

0 

Together with the evaporation at the hemi- 
spherical surface, which was calculated by 
Birkhoff et al. [4], this must equal the volume 
increase of the bubble 

2 = &f*-+aB” at 

ari afi q=o 

ae, a2e, 
aZ - aq2 -- o<q<p 

(18) 

(19) 

2nr,2 2 = - 2na,r,KPZ,Rf 
“d/? 

s 
dz 

0 

x (1 + 2PZ,Zz)-*dr + 

+ 2lra,r,x- + (,/6) KPtRfJ. (25) 
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The bubble growth rate is thus 

R+ = - KZ, 
Tddp s &l + 2PZ$)-a dz 

0 

+ rc-+ (,/6) KJP-“. (26) 

5. ANALYTICAL SOLUTION FOR A SPECIAL 

CASE, A USEFUL APPROXIMATION 

An interesting aspect is revealed when the 
identity 

and the integral I in (26) 

I= 

1 s g (1 + 2PZ;z)- s dz 

(27) 
0 1 

0 

+ 
I’d/3 

s 
&‘I + 2PZ;z)-s dr (28) 

1 

are compared. z = 1 corresponds to the time or 
position at which the penetration distance for 
heat diffusion is so much less than twice the 
microlayer thickness that the thermal properties 
of the solid have not yet had a noticeable 
influence on microlayer evaporation. At the 
values of the superheat normally found only a 
small fraction of the heat needed to evaporate 
the liquid is supplied by its own heat content, 
and the second integral in (27) is therefore 
larger than the first. Nevertheless, in (28) when 
PZ; 9 1, the first integral will be the larger one. 
It can be concluded that although the thermal 
properties of the solid have an important 
influence on the total evaporation of the micro- 
layer, and thus on the radius of the dry area 
under the bubble, which is 

ld = Cldrb = (1 + 2PZ,2$“r,, (29) 

they hardly affect the bubble growth rate 
because the outer ring of the microlayer, where 

no heat has yet been withdrawn from the solid, 
is wide and has moreover a large circumference. 
This explains an apparent contradiction which 
emerged from our experiments, as will be dis- 
cussed in section 6. 

An important consequence of these findings 
is that the analytical solution for 

provides a good approximation for the bubble 
growth rate, although it is useless for predicting 
the dry area radius under the bubble. This 
analytical solution, also a self-similar one, was 
obtained by Knuth [ 151. In terms 
independent variable [, 

of the 

1-q 
i=,t; 

and one parameter C 

c,l-fi 
22” 

given by 

JTC+ = C ec2 erfc C 

the solution is 

8= 
erfc C - erfc [ 

erfc C ’ 

We thus have 

/I = 1 - 2cz+ 

Zd = (4C2)_ l 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

and the expression (26) now becomes 

+ n-+ (J6) KJP-“. (37) 

This solution is compared with the results of a 
numerical calculation in Fig. 3. Equations 
(14H21) were solved numerically to obtain the 
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0 J=O1 

A J/O05 
2 PZ,‘= I 

FIG. 3. Numerically calculated values of the integral 

The ratio of the first terms in (26) and (37) to compare 
numerical and analytical solutions. 

integral in (26) and the value of rd for various 
values of the parameters 2PZt and MH-*. The 
values for zd are shown in Fig. 4. These numerical 
results will be used to evaluate the observed 
values of growth rate and dry area radius. 

When J is small we have approximately 

c = fn-4 (38) 

and when aiso PZZ is not too small (37) reduces 
to 

R‘r = .-* (J2) KJP-*(l + ,/3). (39) 

It is interesting to note that in the approximation 
for microlayer evaporation corresponding to 
equations (14H21) the hemispherical and micro- 
layer surfaces are joined smoothly. At the outer 
ring of the microlayer the evaporation is 
described in this approximation by (3t), from 
which the shape of the microlayer surface can 

be calculated. The thickness is 

or 

Y = ; = Z,R-%i(l - 2Cz+) (40) 

y = Z,R-+d - C(,/2P)-+R-+(l - 5’)“. (41) 

When d approaches 1 from below the deriva- 
tive dyidg becomes infinite; thus the tangents 
to the hemispherical and microlayer surfaces 
have the same direction where these surfaces 
meet. 

FIG. 4. Dimensionless time interval TV necessary for complete 
evaporation of the thin liquid layer, calculated numerically. 

6. APPLICATION TO NUCLEATE BOILING 

In nucleate pool boiling at low pressures with 
a small constant external heat input there is a 
large time interval between the nucleation of 
subsequent bubbles. During this interval the 
heat from the external source is partly accumu- 
lated in the solid, replacing the heat lost to the 
preceding bubble, while a relatively small 
amount of heat is conducted into the liquid. The 
bulk of the liquid is at the saturation tempera- 
ture and the liquid near the solid will be super- 
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heated. When the replacement of the lost heat 
has been completed the heat conduction be- 
comes almost stationary, so the solid will have 
a practically uniform temperature. Obviously, 
the liquid in direct contact with it has the same 
temperature and a temperature gradient is 
found in the liquid. The temperature field will 
be indicated by 1;(2”), with ‘7;(O) = 7’,. 

At that moment the next bubble emerges 
from its nucleation cavity. After the initial 
phase of growth when the dynamical excess 
pressure inside is at its maximum corresponding 
to the liquid superheat it enters the period of 
rapid growth. If it is assumed that the bubble 
grows according to expression (9) the theory 
developed in the foregoing describes the heat 
conduction and the evaporation at the liquid 
layer under the bubble. The initial conditions 
near the solid-liquid interface are the same as 
those in section 4. The temperature drop 
across a distance of the order of the extremely 
small microlayer thickness, which is a result of 
the thermal gradient in the liquid, can be 
neglected, while it can be shown that the small 
external heat input is negligible in comparison 
with the transient heat flux given by (21) and 
(35) until the bubble has grown to very large 
dimensions. The contribution to growth of the 
evaporation at the hemispherical surface is 
different, however, from the contribution found 
in the case of uniformly superheated liquid. 

The temperature field in the liquid affects 
this contribution in two different ways. In 
terms of spherical polar coordinates the varia- 
tion of temperature with radial position will 
have an influence which is negligible at first, but 
the cause of a deviation from equation (9) 
later. Before this deviation occurs the variation 
of temperature with 9 will not change with time 
and influence relation (9) through the value of 
k only. 

We will first discuss the consequences of a 
radial variation of temperature. At the hemi- 
spherical surface of a bubble growing rapidly at 
a liquid-solid interface under conditions of 
uniform initial superheat a radial temperature 

gradient extends in the liquid to 

r = rb + Ar, 

where Ar,, is given by 

(42) 

Ar, = a)k-‘r, = r,lRP*P-i, 
J2 

(43) 

When there is an initial radial temperature 
gradient in the liquid, this will affect the growth 
relation (9) only when this gradient, which is 
enhanced in the radial direction by the flow 
field, becomes comparable in magnitude with 
the temperature gradient associated with the 
self-similar solution, which itself decreases pro- 
portionally to tP in view of (43). Therefore 
during a short time interval growth will occur 
according to (9), after which a deviation from 
this relation will be observed. (For a spherical 
bubble this has been shown quantitatively by 
Skinner and Bankoff [ 161.) 

We now restrict our attention to the time 
interval during which (9) holds, having to 
account for the influence of the variation of 
initial temperature with 9 in this interval. A 
bubble emerging from a nucleation cavity has 
a finite radius before rapid growth starts. At 
the beginning of growth the liquid at a short 
distance outside the bubble has a temperature 
distribution ranging with varying 9 from the 
temperature of the solid at the base of the bubble 
to a lower temperature at the top of the bubble. 
This temperature distribution remains un- 
changed in the uniformly radial flow field, as 
the distance between neighbouring liquid 
volumes at equal distances from the hemi- 
spherical bubble boundary increases propor- 
tionally to kt”, while the penetration distance 
for heat diffusion is proportional to (a&)*. The 
ratio of these quantities, which is (2 PR)*, is 
large. The liquid superheat which governs the 
local rate of evaporation is thus constant for 
given 9. As a consequence the rate of vapour 
generation from the entire hemispherical surface 
could be calculated by using an average value 
of J, which is constant with time, in the last 
term of equation (26). The relation (9) is in- 



H.M. 

FIG, 5. Growth of a bubble on the Pyrex glass plate. Series of frames of film 
made with a high-speed camera. The liquid layer and the dry area under the 

bubble are visible as explained in the text. 
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fluenced therefore through the value of the As liquids we used n~heptane, benzene and 

constant k only until the radial temperature carbon tetrachtoride at reduced pressures. To 

causes a deviation. A consequence of the enable observation of the liquid layer under the 
geometry of the sphere is that the average bubble and the dry area at its centre we used 
replacing .I can be expressed as ground surfaces and a glass prism: see Figs. 5 

and 6. 
e.0 

J’ = 2;’ 
6.0 s 

[l;(Z) - To] dz’ (44) ------_ cone 
a .-- Line of otwmtm 

where rb, 0 is the radius of the bubble at the 
beginning of rapid growth. Note that the 
temperature distribution over 9 can in principte 
be measured when the bubble has grown to a 
much larger size than that which it has at the 
beginning of rapid growth. 

As we have shown that growth according to 
(9) can be observed in nucleate boiling, we will 
discuss here some experimental results as an /” 
illustration of the theory developed in the fore- ” 
going. 

Growth rates of a large number of bubbles 
growing on a transparent heating surface were 
determined with a high-speed film camera. 
The heating surface was a Pyrex-glass or a 
Perspex plate of 20 mm thickness heated 
electrically by an electroconductive gold layer FIG, 6. Reversed effect of total reflection to detect presence of 
of 10 nm on the side in contact with the liquid. microlayer. 

Tubie 4. Growth rates of vapor bubbles 

Liquid 

- 
Heating surface 
Pressure (~N/mz) 

(mm Hg) 
Boiling point (K) 
Superheat (K) 
J 
MH-* 
K 
P 
R&,, J’ = 0 

J’ zz fJ 

R;i,, I’ = 0 
J’ = 4J & O-6 

= 

R obserWrd average 
Individual values of Rf 

n-Heptane 

Pyrex 
16.6 

125 
3¶8 

18 
0.105 
3.3 

1080 
4.0 

45 
71 
55 
81 
82 

7%73-73-75-115-100 
85-92-50-70-92-78 

n-Heptane n-Heptane n-Heptane Benzene tet~~~~~ide 

I -,-- _..__. 
Pyrex Pyrex Perspex Pyrex Pyrex 

166 24.6 24.6 30 233 
125 185 18.5 228 175 
318 329 329 319 308 

19 18 16 26 27 
0.11 0.107 0.095 0,108 0.07 
1.3 3.3 1.3 3.2 42 

1080 1.55 755 966 1900 
4.0 3.8 3.8 4.4 5.5 

41 33 29 40 45 
14 52 46 63 71 
51 4t 32 48 52 
78 60 49 71 78 
67 62 52 73 55 

6%53-72-61 43-94-59 51-53-37 7S76 55 
62-84-75 61-51 46-70-55 

G 
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Plots of the squared bubble radius rt vs. 
time yielded straight lines over the interval 
1 mm < rb < 2 mm for all bubbles, while for 
many bubbles the straight lines extended beyond 
this range. The slope of these lines yields the 
growth constant. Table 4 presents the values 
found and compares them with the results of 
the approximate analytical calculation, equation 
(37). The results of the numerical solution, 
obtained from Fig. 3 with 2, = 06, have also 
been included. Zb = O-6 is in the middle of the 
range of values obtained from theory and 
experiment. The value of J’, defined in (44), is 
clearly different for each individual bubble. 
Putting J’ = jJ, we obtain reasonable agreement 
between the calculated growth rate and the 
average of a number of values obtained experi- 
mentally. 

It proved difficult to determine the value of the 
dimensionless constant 2, from the ratio of 
bubble radius and dry area radius with (29). 
Measurement from the films of the dry area 
radius is useful only in the range 1 mm < r, < 2 
mm where the bubble boundary has passed at 
the velocity corresponding to rb = ktt. In this 
range effects of surface roughness and constant 
electrical heat input do not play any role. 
Many bubbles, especially on Perspex, leave the 
heating surface before the dry area has grown 
to this size. Straight-line plots of ri vs. t were 
obtained, by drawing a line matching the plotted 
data as closely as possible. See the plots of Fig. 7 
for the bubble in Fig. 5. Its slope, divided by 
the slope of rt vs. t yields $. The values obtained 
for Z, between O-3 and O-8, are presented in 
Table 5. Their order of magnitude agrees with 
the value 0.9 predicted in the appendix. From 
more direct measurements by Cooper and 
Lloyd [ 111 values between 0.4 and O-7 can be 
calculated. Although the spread in the experi- 
mental values is too large to reach a final 
conclusion, it appears that the experimental 
values are lower than the theoretical one. This 
can be understood when it is considered that 
the experimental values of Z, are all calculated 
on the assumption that the original thickness of 

Frame number 

FIG. 7. Bubble radius and dry area radius as a function of 
time. Bubble of Fig. 5. Time between frames 288 vs. 

the microlayer is equal to the total amount of 
liquid evaporated. Formally the amount carried 
away by the residual flow should be added to 
this. 

Note that Table 4 shows the bubble growth 
rate to be hardly dependent on the value of the 
parameter 

whereas the value of ua2 in Table 5 is much 
larger on Perspex than on Pyrex. This indicates 
that the thermal properties of the solid have a 
small influence on the bubble growth rate but 
affect dry area radius considerably, which 
confirms the arguments at the beginning of 
section 5. 

7. CONCLUDING REMARKS 

The end of the phase of rapid growth remains 
an interesting subject for further study. At the 
latest the end will come when one of the last 
two conditions in Table 1 is no longer satisfied. 
An earlier end is also possible. When growth 
slows down, at the moment when the influence 
of the radial component of a temperature 
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Table 5. experimental v&es of Z, 

Liquid 

Heating surface 
Pressure (kN/m’) 

(mm Hg) 
Boiling point (K) 
Superheat (K) 
J 
MH-+ 
K 
P 

$;:& withI’=ff 
ad, obscr*td 
rd from Fig. 4 
2, from ad 
Z, theor. 

n-Heptane 
_.._ 

Pyrex 
24.6 

185 
329 

18 
0.107 
3.3 

755 
3.8 

60 60 
10.5 
11 
o-34 

-0.9 
- 

n-Heptane 

Perspex 
166 

125 
318 

19 
0.11 
1.3 

1080 
4.0 

71 78 
-160 
-33 

-0.78 
-0.9 

Benzene Carbon tetrachloride 
__~____ 

Pyrex Pyrex 
30.0 23.3 

228 175 
319 308 
26 27 
0.108 0.07 
3.2 4.2 

966 1900 
4.4 5.5 

76 71 70 78 55 
19 18.2 31 

10 17 
0.45 044 0.39 

-0.9 -0.9 

gradient initially present in the liquid becomes 
noticeable, separation of the boundary layer 
could occur. The decrease in dynamical pressure 
resulting from the reduction in growth rate will 
further increase the relative importancx: of 
surface tension and gravity. According to all 
these mechanisms the bubble will lose contact 
with the solid surface, the main heat source for 
growth. Following the reduction in growth rate 
growth will thus stop almost entirely. 

When effects of surface tension are important 
the self-similar solution is not applicable. As 
the observed growth is adequately described 
by the self-similar solution, surface tension 
cannot play an important role in it. This contrasts 
with a suggestion by Cooper and Lloyd [lI] 
that surface tension influences the flow near 
the junction of the hemispherical and microlayer 
surfaces. 

It should be noted that the same treatment as 
given above will also apply to bubble growth at 
the heating surface in a binary mixture if the 
surface tension gradient, resulting from the 
concentration gradient along the microlayer, 
does not induce strong flow in it. The equations 
for this problem can easily be derived with the 
help of Striven’s paper [5]. 
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APPENDIX 

In this appendix the flow field around the bubble is 

studied more closely, the aim being to calculate the constant 

Z, and to establish that separation of the boundary layer will 

not occur outside the bubble. 

We use cylindrical polar coordinates i and i, the positive 

i-axis extending into the liquid perpendicular to the solid 

surface. The components of the liquid velocity are B, and ii=. 

The continuity equation 

(A.1) 

is identically satisfied when a stream function p,, is intro- 

duced such that 

1 aqb fj,=-- 
i az' 

and 

ia% ii,= ---, i ar 

64.2) 

(A.3) 

For large values of R the boundary layer is confined to a 

narrow region near the solid where 

; = O(R-+). (A.4) 

Order of magnitude considerations show that the pressure 

distribution in the boundary layer is that of the main stream 
region given by (lo), r being replaced by i: in view of (A.4). 

The radial component of the Navier-Stokes equations then 

takes the form 

The relative order of magnitude of the terms, after the 

brackets have been removed, is 1, 1, 1; 1, 1, 1, R-l. 1, R-‘. 

R ‘. The small terms will be neglected. 

The boundary conditions are 

B, = 0 

i;, = 0 1 
at Z = 0, (A.61 

and 

k=t+ 
“, + “,,m = 3 at the top of the boundary layer (A.7) 

where the velocity approaches that of the main stream. 

Using the self-similarity of the solution we introduce new 

independent variables 

azT 
kt+’ 

(A.81 

q=$(fR)‘=t 
(4VJ)f 

(A.9) 

and a new dependent variable j(E, q) such that 

k3tt 
(~b = F (@-+A& v). (A.lO) 

The boundary conditions (A.6) and (A.7) are satisfied when 

j=O 

aj 

1 

at q = 0, (A.ll) 

&= 
0 

and 

aj 
p-1 
all 

when q-+ m. (A.12) 

Equation (A.5) becomes 

_ 4 _ 2k ai a3 ( 26 ai a? _ o, 
atlava afiag 

& 
a$ - I 

(A.13) 

Its form suggests a procedure of successive approximations 

for large E3. Putting 

rt 9 

j = s h(t) dt + $ I fAT) dt + 1 
(A.14) 

0 0 
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the first of the conditions (A.1 1) is satistied and (A.13) which is equivalent to 

becomes 

- 8fi + 4f; 
- 

4 
- 

22 s f&)dr 1 ” 

dfo 1 dfi 
dtl +--=0 at r7=0, 

a3 dq 
(A.22) 

when terms containing higher powers of a-s are neglected. 

Consider the solution (A.19) of the first-order equation. As 

?erfc(-fj)+ co for rl-‘cc,, 

we have 

with the conditions 

+ J& [. . .] + = 0, (A.15) B(m) = 0 

in view of (A.17). But then 

m 

f. = 0, fi = 0, at r7 = 0, (A.16) s dB 
B(I) = - %drl, 

f,=l, f,=O, at n=m. (A.17) n 

and as 
Owing to the last condition the solution will satisfy (A.12) 

for all values of B. The zero order solution is 
A(0) = -B(O), (A.24) 

f0 = 1 - n*ierfcq 
in view of condition (A.16), we have 

(A.18) 

where i erfc r7 denotes the first integral of the complementary -dB 

error function of 1. The homogeneous part of the first-order A(o) = s d,ld”. 
equations has the solutions i4 erfc 9 and i4 erfc (-n), these 

0 

being fourth integrals of the complementary error function. From the conditions (A.20) and (A.21) we have 

(A.23) 

(A.25) 

dB 4{1 -(l - x+i erfc r7)2 + fn* erfc r) (r) + n*i’ erfc rf - &r*);i4 erfc f) 

&= i4 erfc ( - q)is erfc q + i3 erfc (- q)i4 erfc tj 
(A.26) 

The solution of the complete equation can be obtained with 

the method of variation of the constants. Putting 

fr = A(# erfc q + B(q)? erfc ( - ‘1) (A.19) 

we have the conditions 

dA 
-i’erfcr) + %i4erfc(-q) = 0 
dtl drl 

(A.20) 

dA 
- -iserfcrf + gi3erfc(-q) 

dtt drl 
1 

= 4 - 4f; + 2% 
s 

&(c)dl (A.21) 

0 

which determine dA/dq and dB/dq. With two constants, 

determined by the boundary conditions, A(q) and B(q) can 

then be found. To find the thickness of the boundary layer 

and to determine whether separation will occur in the region 

h > 1, it is not necessary to obtain the solution completely. 

Separation of the boundary layer is characterized by 
the reversal of the direction of flow at the solid surface. Thus 

the point of separation is determined by the condition 

Repeated partial integrations, combined with the use of 

recurrence relations and differentiation formulas for the 

integrals of the complementary error function, then yield 

with (A.25) 

A(O) = $? - 7. (A.27) 

With (A.24) and (A.20) we have from (A.19) 

= -2A(0)i3 erfc (0) = - $. (A.28) 

The condition for separation (A.22) is then 

n*-$&;-g =o. (A.29) 

A point of separation is therefore not found in the region 

2 > 1 outside the bubble. The result i3 = 0.63 from (A.29) is 

itself meaningless because the analysis is valid outside the 

bubble only. 

The displacement thickness h* of the boundary layer is 

defined by the expression 

m 

h* = (4vrt)’ 
s 

‘ddij,, 
“,., 

(A.30) 

0 
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which can IX rewritten, if only zero and first-order terms in 
--3 z are retained, as 

x ’ (M’erfcq + Bi”erfcf-n)jdq 
1 1 

(A.31) 

I3 

A partial integration of the second integrai f, yields 

* 

I, = 
?^ 

jA?erfcq f B?erfc(-q)dn 

= ” [Ai’erfcq - Bi’erfc(-q)]? 
cc 

1 dA 

+lo 
dtl i3 erfc q - z i” erfc (- ry) dq, (A.32) 

0 

with the use of the recurrence relations and (A.20). As 
&co) = 0 and is erfc (CO) = 0, using also (A.24) and jA.21) 
we obtain 

+ $tf erfc r~ (rf + r(* i2 erfc rf - $x*)1 drf 

9 4,,/2 496 
= _ +xt - .._.. -. - - 

4 5 225x 
(A.33) 

The final result is 

to the first order in f[B” 

The zero-order term for the thickness of the boundary 
layer can also be obtained from a very simpte calculation. 

The component of the Navier-Stokes equation along the 
so&d surface can be sirnp~j~ed to a diffusion equation for 
the difference between actual and main stream velocity. as 
was done by Qlander and Watts (16). But such an approxi- 
mation, which as they assume is valid for small values of time. 
is valid only far away from the bubble for large 6, in view 
of (A.8). 

Any residual velocity of the liquid captured under the 
bubble will be small, as the liquid in the boundary layer is 
decelerated by the adverse pressure gradient outside the 
bubble and stopped entirely by the friction forces once 
under the bubble where no pressure force acts on the liquid. 
Effects of a residual vefocity are automatically taken into 
account, if the disptacement thickness of the boundary 
layer, by definition the hypothetical thickness of the layer 
at standstill in a further undistur~ flow field, is used to 
calculate the volume of liquid captured under the bubble. 
If the liquid in the microiayer is assumed to be at standstill 
the displacement thickness of the boundary layer must be 
equal to the microlayer thickness, which is given by 

Mi) z, 
(4v,t) = J2’ 

(A.35) 

when (11) is rewritten with the help of (8) and (9). Comparing 
(A.35) and (A.34) at a = I we find that Z, will be of the order 
of magnitude 

Z, h 0.9. (A.36) 

Following this approach consistentty, we consider in the 
analysis the liquid in the microlayer to be at rest. Changes in 
the original thickness of the microlayer, given by (II), will 
then occur through evaporation only. 

Without evaporation, the thickness at each point would 
be given by (11) when rs is replaced by i. We did not solve 
the problem of residual flow, but it is easy to see that it will 
cause a slight change in the radial distribution of the liquid 
volume under the bubble. Towards the outer edge the 
microlayer thickness will be Iarger than that given by (Ii), 
towards the centre of the bubble it will be slightly smaller. 
Neglect of the residual flow thus involves the neglect of a 
decrease in thickness additionat to the decrease by evapora- 
tion. 

CROISSANCE RAPIDE DUNE BULLE DE VAPEUR A L’INTERFACE LIQUIDE-SOLIDE 

RCumGLa croissance rapide des bulles de vapeur a I’interface liquid+sohde comme dans les liquides 
bouillants est d&rite par une solution d’affinitb. Une bulle crolt comme une hemisphere, Ie carre du 
rayon augmentant proportionaellement au temps, tandis qu’une fine couche de liquide quitte le solide 
sous la bulle. L’bvaporation de cette couche contribue B la croissance et. critb une region &he en son 
centre. La thtorie est illustr& par queiques resultats expt%mentaux. En appendice on presente une analyse 
de Ia couche limite sur la surface solide hors de la bulle. On montre que la Gparation de cette couche 

Iimite ne peut se prod&e ce qui exphque ia presence d’une microcouche. 
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DAS SCHNELLE WAC~STUM EINER DAMPFBLASE AN EINER FL~SSIG-FES~N 
GRENZFL~CHE 

Zusammenfassung--Das schnelle Wachstum von Dampfblasen an einer fliissig-festen Grenzflache, wie 
beim Sieden von fhissigkciten, wird mit Hilfe einer &mhchkeitsliisung beschrieben. Eine Blase wichst 
als Halbkugel, das Quadrat des Radius wachst dabei proportional mit der Zeit, wahrend gleichzeitig 
eine dtinne Fltissigkeitsschicht auf der festen Oberfllche unter der Blase bestehen bleibt. Die Verdampfung 
von dieser Schicht tragt zur Wachstumsrate bei und erzeugt eine trockene Fllche in ihrem Zentrum. 
Die Theorie ist mit einigen experimentellen Ergebnissen veranschauhcht worden. Im Anhang wird eine 
Analyse iiber die Grenzschicht an der festen Oberfllche ausserhalb der Blase durchgehihrt. Es wird 
gezeigt, dass eine Abliisung dieser Grenzschicht nicht auftritt. was die Anwesenheit der Mikroschicht 

erklart. 

bbICTPb1~ POCT ~APOBOrO IIY3bIPbKA HA n~BEPXHOCT~ 
PA3,QEJIA ~~~KOCTb - T~~~~OE TEJIO 

A~OTa~~-~~CTp~~ pOCT Ily3blpbKOB napa Ha IlOBepXHOCTM pa3fieJIa HiMRKOCTb - 

TE6p~OeTeJIO,KaK,SiaIlptlMep,B KnnR~~XWCAAKOCTFIX,OnMCblBaeTCR yp3BHeHLieM aBTOMOJ&e- 

JlbHOCTH. 

rIy3blpi5~ pacTgT Kar4 nonyc@epa, KBaEpaT pankiyca ~0~0p0B y3emwmaeTm nponopsnq- 

HaJIbHO BpeMeHH,TOrJJa K;LK TOHKAi CJIOi HUQKOCTH OCTaiiTCFl Ha TBdpAOfi IIOBepXHOCTH tI0J.I 

IIy3bIpbKOM. I?CIIapeHMe y13 3TOI'O CJIOR CO3aagT CyXyI0 06nacTb B eI'0 UeHTpe H BJIBReT Ha 

CKOpOCTb pOCT3 Ity3hIpbKa. Teopm AJIJIIOCTpkipyeTCfl HeHOTOpbIM" 3KCIIepIIMeHTaJIbHbIMU 

HaHHbIIMII. B IlpHJlOmeHMH 3HaJl~TINeCKU paCCMOTpeH IIOI'paHWIHbIti CJIOi Ha TBgpfiOfi 

noaepxaomw 38 npenenaiwi ny3bIpbKa. IIoKa3aK0, 9TO OTpblB 3TOFO IiOrpaHWIHOPO CJIOR 

He ~pOHCXOAHT. 


