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THE RAPID GROWTH OF A VAPOUR BUBBLE

AT A LIQUID-SOLID INTERFACE
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Abstract—The rapid growth of vapour bubbles at a liquid—solid interface, as in boiling liquids, is des-
cribed by a self-similar solution. A bubble grows as a hemisphere, the square of the radius increasing
proportionally with time, while a thin layer of liquid is left on the solid under the bubble. Evaporation
from this layer contributes to the growth rate and creates a dry area at its centre. The theory is illustrated
with some experimental results. In the Appendix an analysis is presented of the boundary layer on the solid
surface outside the bubble. It is shown that separation of this boundary layer does not occur, which explains
the presence of the microlayer.
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NOMENCLATURE
heat diffusivity [m?s™!];
specific heat [Jkg 'K ™'];
dimensionless parameter ;
modified stream function ;
acceleration of gravity [ms™?];
microlayer thickness [m];
original microlayer thickness {m] ;
boundary-layer thickness [m] ;
aga;;
dimensionless stream function ;
cfTy — T)/L;
growth constant [ms™%];
PPy
latent heat of evaporation [Jkg™'];
Agdy;
unit normal ;
pressure in liquid {Nm ™ ?];
ambient pressure [Nm™?];
pressure in vapour [Nm™2];
Prandtl number v,/q;;
dimensionless liquid pressure;
dimensionless vapour pressure;
hemispherical bubble radius [m] ;
nucleation cavity radius [m];

t Present address: Dept. of Physics, Eindhoven Uni-
versity of Technology, The Netherlands.
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dry area radius [m];
Reynolds number k2/2v,;
bubble surface [m?];

time [s];

temperature (K]

saturation temperature [K];
initial temperature [K];
liquid velocity [ms™1];
bubble volume [m?];
dimensionless liquid velocity :
dimensionless constant ;
spherical coordinate [m] ;
spherical coordinate ;
cylindrical coordinate [m];
cylindrical coordinate [m] ;
dimensionless spherical coordinate ;

dimensionless cylindrical coordinates;

dimensionless dry area radius;
dimensionless microlayer thickness
dimensionless microlayer thickness;
heat conductivity [Wm™ 'K~ 1]:
dimensionless time;

dimensionless evaporation time of
microlayer ;



0, dimensionless temperature ;

vy, kinematic viscosity [m3s~'];

P density [kgm™3];

Do vapour density at T; [kgm ™3]

20 vapour density at T, [kgm™3];

a, surface tension {[Nm™'].
Subscripts

s, solid ;

i, liquid ;

v, vapour.

1. INTRODUCTION

IN BOILING liquids bubbles grow at the heat-
ing surface where they nucleate from pits and
scratches, as described by Bankoff [1]. Until
recently bubble growth theories were available
only for spherical bubbles in an infinite liquid
medium, for example those of Forster and
Zuber [2], Plesset and Zwick [3], Birkhoff et al.
{4] and Scriven [5]. For lack of a more appro-
priate theory, they were used to evaluate
experiments on bubble growth at the heating
surface, as in the paper by Cole and Shulman [6].

However, the experiments carried out by
Moore and Mesler [7] show that under a
bubble growing on a solid surface a thin layer
of liquid is present. This so-called microlayer,
which influences bubble growth was observed
directly by Sharp [8], Torikai [9] and in our
own experiments, To detect the microlayer
we used a transparent heating surface fitted
with a glass prism to exploit the effect of total
reflection, in combination with high-speed
photography. This is similar to that described by
Torikai [9]. The role of the microlayer in
bubble growth was successfully demonstrated
in a paper by Cooper [10] based on a series of
experiments, using tiny resistance thermometers
on the heating surface, reported by Cooper and
Lioyd [11]. The results on microlayer thickness
obtained in our work, which was carried out in
the same period, agree with the theoretical
value which will be derived here and also confirm
the results obtained by Cooper and Lloyd [11],
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although the two experimental techniques are
essentially different. This point is of interest
because Sharp [8] and more recently also
Jawurek [12] who both used optical inter-
ference methods, found a thickness which
appears to be at least one order of magnitude
smaller.

In this analysis of bubble growth at the
heating surface we will start from a more
general consideration of the problem structure.
This will allow us to simplify many aspects of
the problem then confronting us, to avoid
unnecessary approximations, and to improve
on Cooper’s [10] not entirely satisfactory
treatment of both microlayer formation and
evaporation. Taking into account the heat
content of the microlayer liquid, which was
neglected by Cooper [10], we can show that
this source of heat governs bubble growth,
although, paradoxically, total microlayer eva-
poration requires a large amount of heat to be
withdrawn from the solid, a conclusion which
is also verified experimentally. These findings
explain why the thermal properties of the solid
hardly influence the bubble growth rate, a
result inferred already by Sernas and Hooper
[13] on the basis of their experimental results.
Owing to neglect of the heat content of the
microlayer liquid, Cooper’s [10] expressions
for the bubble growth rate are incorrect, even
in the extreme case analysed in his paper, and are
not therefore the upper and lower limits for the
growth rate to be expected in intermediate cases.

2. GROWTH HISTORY OF A BUBBLE

During nucleation and initial growth the
pressure inside a bubble is practically equal to
the saturation pressure at the prevailing super-
heat. A nucleation radius r, requires a certain
superheat, which is determined by the surface
tension excess pressure. Taking terms (p, — p,)/p;
to be equal to 1, we can write
p,L 20

1 c

(1)

When for a spherical bubble the radius r,
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exceeds r, the surface tension pressure decreases
and the difference between the excess vapour
pressure and the surface tension pressure can
drive growth. For such a spherical bubble the
initial growth has been described by Plesset
and Zwick [3]. We use their arguments here in
a slightly modified form. The Rayleigh equation

1 20 3 dr,,)2
—[p, — p(0)] = — + ===
o [p, — p(o0)] o T2 (dt

can be integrated to give
3r.

dr,\* 2p, — p() 1r
oy _ 2Py = KO}, 2l
(dt) 3 p 2r + 2r, 3

A constant growth rate will be approached but
cannot be sustained. The heat which should
have gone into the bubble therefore as latent
heat is proportional to t?, increasing more
rapidly than the volume of liquid ri(a)* + ¢t
from which heat could be withdrawn. The
temperature and the vapour pressure therefore
decrease, and thereby also the growth rate.
Ultimately the temperature in the bubble will
hardly differ from the saturation temperature
T,, the vapour density then being practically
equal to p, but at least for some time the
dynamical excess pressure is nevertheless still
large compared with pressure effects of surface
tension and gravity. The growth rate asymptotic-
ally approaches a value which is governed by
heat transport to the bubble during this so-
called stage of rapid growth} For a spherical
bubble this form of growth was described by
Birkhoff et al. [4]. As we will see the Reynolds
number R has a constant large value. The
successive stages of growth are also discussed
in a numerical study by Waldman and Houghton
[14].

T The term rapid growth is used because the volumetric
growth rate is highest during this growth phase. Note that
this is not true for the linear growth rate, which is highest
during initial growth.
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In the problem of bubble growth at a solid-
liquid interface these different stages of growth
can also be distinguished. The beginning and
end of the stage of rapid growth are determined
by the strong inequalities in Table 1. To

Table 1. Conditions for self-similar solution

Original form Form for growth r, = ket

T,-T Pkt

1 <1
T-1° dp a
8 d_f sm(Tl — Tolry
Py~ Pu pik*
et <
n 8p(oo)r
Py 8!1’1?
— 2«1 —t <1
P, — ploo) P2
20 <1 1607, <1
— & <4
ry[p, — ploo)] pk*

describe it we can use a number of unrestrictive
simplifying assumptions, neglecting vapour vis-
cosity, pressure differences in the bubble and
others which are discussed in detail by Plesset
and Zwick [3].

For the case of uniform initial superheat it can
be shown that the problem of rapid growth is
simpler than expected. When we use spherical
polar coordinates r, 3 and ¢, of which ¢ does
not occur owing to symmetry, it is found that
the number of independent variables is two and
not three, as r and t occur in a certain combina-
tion,

o = rfktt )

only. A self-similar solution with independent
variables « and 8 can describe rapid growth.
The governing differential equations are the
r and 8 components of the Navier-Stokes
equation in the liquid, the heat diffusion
equation in the liquid and the solid, supple-
mented by a number of homogeneous boundary
and symmetry conditions. We further have the
heat balance which requires that all heat
conducted to the bubble surface at temperature
T, is used for the evaporation of liquid and
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therefore controls the rate of vapour generation
and thus of bubble growth.

dv

J.}L,VY}. ndS = p,L—. {5)

dr

b
To establish that these equations have a self-
similar solution the independent and dependent

variables shown in Table 2 must be substituted

Table 2. Variables for self-similar solution

Original variable Self-similar variable

t

kit
g 9
T e, §) T-T
o 8) = 9
- T
't%
v, w (e, 8) =
vgt?
) L9 =
vy W@(@ ) k
§
_ip — plao)jt
p — ploo) 00,9 = ok
{pv - P(CO)}i
pe — ploo) Q, = P[kz

into the equations. At the same time it is
assumed that the bubble surface can be des-
cribed in the o, § system. Doing so, we find that
reformulation in terms of « and § and functions
of these is possible, as the variable ¢ disappears
from all equations and conditions. The equa-
tions obtained in this way are still too difficult
to solve directly and are therefore not reproduced
here. On this basis some conclusions can be
drawn.

(1) The bubble has a fixed surface o = o(J) in
the o, 3 system which implies that the bubble
will not change its shape during rapid
growth.
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(2) The surface is given by
r = ktta,(9) = r¥3, 1) (6)

in the r, 8, t system of coordinates, the bubble
clearly grows proportionally to *
(3) Normalizing the shape factor such that

%(0) = 1 (7

we obtain k as the growth constant in the
direction 3 =0, which can be used to
define the bubble Reynolds number

g HOOddEO0) R

v, 2y,

which is constant. As a result of the simplify-
ing assumptions the self-similar solution for
rapid growth is valid only when a number of
conditions are fulfilled. These have been
worked out for growth proportional to
in Table 1, where r, = r}(0, t). See also Fig. 1
which shows the phase of rapid growth for
two cases.

In the following we shall analyse the phase of
rapid growth under the idealized conditions that
solid and liquid are uniformly superheated at
equal temperatures and no heat is generated in
the solid. In section 6 we shall sece how the
results of this analysis can be applied to nucleate
boiling.

3. FLOW FIELD AND SHAPE OF THE BUBBLE

When the Reynolds number defined in the
previous section has a large value, the local
volume increase associated with the evaporation
of liquid into the bubble will cause liquid flow
resembling inviscid flow, except in a thin layer
on the solid surface where a viscous boundary
layer develops to satisfy the non-slip condition.
The inviscid flow in the main region will be
uniformly radial, as there is no preferred
direction for such flow in this situation, and the
bubble will therefore grow in the form of a
hemisphere with radius r,. Under the bubble a
thin layer of liquid, the microlayer, remains on
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FiG. 1. Pressure effects calculated for bubble growth following r, = ktt.
Bubble in n-heptane at a uniform superheat of 17-5 K, boiling point 329 K
at a pressure of 18° mm Hg = 24-6 kN/m?, and a bubble at 4 K superheat.

. superheat excess pressure p, L/ Ty (T, — Tp);
. ambient pressure p(c0);

. dynamical excess pressure pk*/8rZ;

. surface tension excess pressure 24g/r,;

. pressure difference across bubble due to gravity pgr,;

L Y A S B

. excess pressure in bubble p, — p(w0), qualitatively.
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FiG. 2. Shape of the growing bubble.

Broken line indicates thickness of the liquid layer at each
point before being decreased by evaporation.

the solid, as shown in Fig, 2. The hemisphere
grows as
r, = kt*.

©)

It can be verified that the liquid outside
the bubble will be accelerated everywhere
during the initial stage of growth when r,
is proportional to t. During this initial stage
flow reversal cannot occur therefore, and a
boundary layer type of flow is established.
During the stage of rapid growth when the
growth rate approaches the value corresponding
to r, = kt*, the acceleration is negative in a
thin shell surrounding the bubble, 1 < (r/r,) <
2% as can be seen from the Navier-Stokes
equation applied to the main stream region:

ov ov tép K (1 1
Br g 2P _ K (2_T) (0
a T pior  2r (2 r (10)

As the flow in the boundary layer, compared
with the main flow, is further decelerated by
viscous forces, flow reversal at this stage would
have to begin by separation of the boundary
layer in the region
r3
l<5<2 (I<a*<?)
Ty
where the flow must overcome a pressure
increase. We will show in the appendix that
separation does not occur: Microlayer forma-
tion is possible during rapid growth.
The amount of liquid captured under the
bubble is determined by the displacement

H. J. VAN OUWERKERK

thickness of the boundary layer at ¥ = r,. (In
the following cylindrical coordinates 7, 2, ¢ will
be used in the description of the microlayer.)

As the bubble will not change its shape, the
thickness of the microlayer at ¥ = r, must be
proportional to the bubble radius. It must
further be proportional to R™* because it is
derived from a boundary-layer thickness. We
have therefore

ho(ry) = rbeR'%. (11)

Although some residual flow is possible where
the liquid is captured under the bubble, it will
be stopped by viscous forces, and we will
assume in the present analysis that the liquid
is at rest under the bubble and that the thickness
hy, will change through evaporation of liquid
only. The value of Z, is calculated in the Appen-
dix.

4. EVAPORATION OF THE MICROLAYER,
BUBBLE GROWTH RATE

In the calculation of microlayer evaporation
a useful simplification is possible. The transient
heat flux which occurs when, upon becoming
part of the microlayer under the bubble, the
liquid is suddenly exposed to evaporation can
be shown to be a factor R* larger in the Z
direction than in the #-direction. Thus, we
assume heat conduction to occur in the Z
direction only. We must now describe the
evaporation of a layer of liquid, at a position
F = F,, of thickness h which was initially

h = h(F,) (12)

at time

_ =2p-2
t, = Fik

(13)

when evaporation begun as a result of a heat
flux to the vapour liquid interface where the
temperature had suddenly dropped from
T, to T,.

In a dimensionless formulation, chosen such
that the smallest number of parameters will
appear, the problem can be stated as follows.
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New variables presented in Table 3 have been

Table 3. Dimensionless variables and parameters for the
calculation of microlayer evaporation

Variables Dimensionless variables
layer thickness h B = hih,
. aft — t)
timet — ¢ =
1 h(z)
e z
position in liquid f=—
ho
position in solid 7 =—H*
ho
T - T,
temperature T 6= 0
T, -T,
Parameters
g% _APa
a j'lpscs
A
M=>
A
T, — T
J= ofTy o)
L
v
p=-
]
k="
pU

defined with the help of the knowledge about
the self-similarity of the solution

6,=0,=1 at =0 (14)
f=1 at =0 (15)
0,=0 at =8 (16)

0,1 when #f—-» —a (17)
00, o0
— = MH * = =
pr H P t =0 (18)
a8, &%, N
o a O<ii<$B (19)
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29, %6,
5 = <0 (20)
g _ (o6,
3?_J<%)FA (21)

These equations can be solved, although in
general only numerically, to obtain § = B(z,J,
MH™*), which then yields the value 1, = 7 (J,
MH '*) for which f =0, corresponding to
complete evaporation. The vapour production
per unit surface area as a function of t is

p, dh dfa, o KR*dp )
T op,dt dthy,  F Z, dt

With this function f the situation at the
microlayer under the bubble at any given
moment can be described. Going from the hemi-
spherical surface towards the bubble centre the
evaporation process is further developed, until
at a radius r; = a,r, the solid surface is dry. The
dimensionless position &, = F,/r, and 7 are
related by (9), (11), (12} and the definition of

in Table 3
_L (1
Twzz\e T )

The total evaporation at the microlayer is then
given by

(23)

23}

_ [« KR*dp
7, Z, dt

rda

277, dF,

4
= —2nar,KPZ bR’L‘[

[0}

gE(l + 2PZ1) #de. (24)
dz

Together with the evaporation at the hemi-
spherical surface, which was calculated by
Birkhoff et al. [4], this must equal the volume
increase of the bubble

Td

2nr,

dr dp
2 d_tb = — 2nay,KPZ,R* ja;

1]
x (1 + 2PZ2)"idt +

+ 2nar,n*(\/6) KP*RYJ.  (25)
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The bubble growth rate is thus

ta

Rt = — KZbJ%(I + 2PZ?7) i dt

0

+ 1t (J6O)KJPTE  (26)

5. ANALYTICAL SOLUTION FOR A SPECIAL
CASE, A USEFUL APPROXIMATION

An interesting aspect is revealed when the
identity

1 d
dag dp
_jadt+ja;dr (27)
0 1
and the integral I in (26)
1
dp _
=" 27)~3
I jdr( + 2PZf1) i dr
0
+ J%(l + 2PZ}t) idr (28)

1

are compared. T = 1 corresponds to the time or
position at which the penetration distance for
heat diffusion is so much less than twice the
microlayer thickness that the thermal properties
of the solid have not yet had a noticeable
influence on microlayer evaporation. At the
values of the superheat normally found only a
small fraction of the heat needed to evaporate
the liquid is supplied by its own heat content,
and the second integral in (27) is therefore
larger than the first. Nevertheless, in (28), when
PZ? > 1, the first integral will be the larger one.
It can be concluded that although the thermal
properties of the solid have an important
influence on the total evaporation of the micro-
layer, and thus on the radius of the dry area

under the bubble, which is
rg = agr, = (1 + 2PZ¢1) *r,, (29)

they hardly affect the bubble growth rate
because the outer ring of the microlayer, where

H. J. VAN OUWERKERK

no heat has yet been withdrawn from the solid,
is wide and has moreover a large circumference.
This explains an apparent contradiction which
emerged from our experiments, as will be dis-
cussed in section 6.

An important consequence of these findings
is that the analytical solution for

1 l 75
MH—‘7 — ( SpScS> — ]

A€

provides a good approximation for the bubble
growth rate, although it is useless for predicting
the dry area radius under the bubble. This
analytical solution, also a self-similar one, was
obtained by Knuth [15]. In terms of the
independent variable {,

17
L= (30)
and one parameter C
1B
c=n (1)
given by
Jnt = Ceerfc C (32)
the solution is
erfc C — erfc{
= - .
erfc C (33)
We thus have
B=1-2Crt* (34)
dap C
— = - = 35
dr T* (33)
1, = (4C*)7! (36)
and the expression (26) now becomes
2PZ2\?
R* = KZ, (1 + 4c2b>
+ 1 ¥ (J6)KIP L. (37

This solution is compared with the results of a
numerical calculation in Fig. 3. Equations
(14)21) were solved numerically to obtain the
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33 1C
MH 2

F1G. 3. Numerically calculated values of the integral

_ (1
The ratio of the first terms in (26} and {37) to compare
numerical and analytical solutions.

d

Pz ([ dp
2V SR+ 2Pzt du
+2cl) g L+ 2P e

o

integral in (26) and the value of 7, for various
values of the parameters 2PZ; and MH ™ *. The
values for 7, are shown in Fig. 4. These numerical
results will be used to evaluate the observed
values of growth rate and dry area radius.

When J is small we have approximately

C=Jn? (38)

and when also PZ? is not too small (37) reduces
1o

Rf = H (J2)KIP (1 + /3). (39)

It is interesting to note that in the approximation
for microlayer evaporation corresponding to
equations (14}21) the hemispherical and micro-
layer surfaces are joined smoothly. At the outer
ring of the microlayer the evaporation is
described in this approximation by (31), from
which the shape of the microlayer surface can
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be calculated. The thickness is

h
y = — = Z,R¥§(1 — 2Ct?)
r

b

(40)
or
y = Z,R7¥ — C(J2P)*R7¥1 — &%)t (41)

When & approaches 1 from below the deriva-
tive dy/d& becomes infinite; thus the tangents
to the hemispherical and microlayer surfaces
have the same direction where these surfaces
meet.

24
J =005
< 20029,
20
|6r>
| J =01
C=006
2
T
>
S
~ 3
O
s
sl
al-
! l )
o 1 33 10

MH'/2

FiG. 4. Dimensionless time interval 1, necessary for complete
evaporation of the thin liguid layer, calculated numerically.

6. APPLICATION TO NUCLEATE BOILING

In nucleate pool boiling at low pressures with
a small constant external heat input there is a
large time interval between the nucleation of
subsequent bubbles. During this interval the
heat from the external source is partly accumu-
lated in the solid, replacing the heat lost to the
preceding bubble, while a relatively small
amount of heat is conducted into the liquid. The
bulk of the liquid is at the saturation tempera-
ture and the liquid near the solid will be super-
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heated. When the replacement of the lost heat
has been completed the heat conduction be-
comes almost stationary, so the solid will have
a practically uniform temperature. Obviously,
the liquid in direct contact with it has the same
temperature and a temperature gradient is
found in the liquid. The temperature field will
be indicated by T)(2), with T,(0) = T;.

At that moment the next bubble emerges
from its nucleation cavity. After the initial
phase of growth when the dynamical excess
pressure inside is at its maximum corresponding
to the liquid superheat it enters the period of
rapid growth. If it is assumed that the bubble
grows according to expression (9), the theory
developed in the foregoing describes the heat
conduction and the evaporation at the liquid
layer under the bubble. The initial conditions
near the solid-liquid interface are the same as
those in section 4. The temperature drop
across a distance of the order of the extremely
small microlayer thickness, which is a result of
the thermal gradient in the liquid, can be
neglected, while it can be shown that the small
external heat input is negligible in comparison
with the transient heat flux given by (21) and
(35) until the bubble has grown to very large
dimensions. The contribution to growth of the
evaporation at the hemispherical surface is
different, however, from the contribution found
in the case of uniformly superheated liquid.

The temperature field in the liquid affects
this contribution in two different ways. In
terms of spherical polar coordinates the varia-
tion of temperature with radial position will
have an influence which is negligible at first, but
the cause of a deviation from equation (9)
later. Before this deviation occurs the variation
of temperature with 3 will not change with time
and influence relation (9) through the value of
k only.

We will first discuss the consequences of a
radial variation of temperature. At the hemi-
spherical surface of a bubble growing rapidly at
a liquid-solid interface under conditions of
uniform initial superheat a radial temperature

H. J. VAN OUWERKERK

gradient extends in the liquid to

r=r,+ Ar, (42)

where Ar, is given by

Ary = atk ™ 'r, = r,,leR"%P_%. (43)
When there is an initial radial temperature
gradient in the liquid, this will affect the growth
relation (9) only when this gradient, which is
enhanced in the radial direction by the flow
field, becomes comparable in magnitude with
the temperature gradient associated with the
self-similar solution, which itself decreases pro-
portionally to t™* in view of (43). Therefore
during a short time interval growth will occur
according to (9), after which a deviation from
this relation will be observed. (For a spherical
bubble this has been shown quantitatively by
Skinner and Bankoff [16].)

We now restrict our attention to the time
interval during which (9) holds, having to
account for the influence of the variation of
initial temperature with 9 in this interval. A
bubble emerging from a nucleation cavity has
a finite radius before rapid growth starts. At
the beginning of growth the liquid at a short
distance outside the bubble has a temperature
distribution ranging with varying § from the
temperature of the solid at the base of the bubble
to a lower temperature at the top of the bubble.
This temperature distribution remains un-
changed in the uniformly radial flow field, as
the distance between neighbouring liquid
volumes at equal distances from the hemi-
spherical bubble boundary increases propor-
tionally to kt*, while the penetration distance
for heat diffusion is proportional to (a,t)*. The
ratio of these quantities, which is (2 PR)?, is
large. The liquid superheat which governs the
local rate of evaporation is thus constant for
given 9. As a consequence the rate of vapour
generation from the entire hemispherical surface
could be calculated by using an average value
of J, which is constant with time, in the last
term of equation (26). The relation (9) is in-
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Fi16. 5. Growth of a bubble on the Pyrex glass plate. Series of frames of film
made with a high-speed camera. The liquid layer and the dry area under the
bubble are visible as explained in the text.

{ facing page 1424}
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fluenced therefore through the value of the
constant k only until the radial temperature
causes a deviation. A consequence of the
geometry of the sphere is that the average
replacing J can be expressed as

j (T3) - T,] dz

¢ 1

g
Lr, o

(44)

where r, , is the radius of the bubble at the
beginning of rapid growth. Note that the
temperature distribution over 9 can in principle
be measured when the bubble has grown to a
much larger size than that which it has at the
beginning of rapid growth.

As we have shown that growth according to
(9) can be observed in nucleate boiling, we will
discuss here some experimental results as an
illustration of the theory developed in the fore-
going.

Growth rates of a large number of bubbles
growing on a transparent heating surface were
determined with a high-speed film camera.
The heating surface was a Pyrex-glass or a
Perspex plate of 20 mm thickness heated
electrically by an electroconductive gold layer
of 10 nm on the side in contact with the liquid.
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As liquids we used n-heptane, benzene and
carbon tetrachloride at reduced pressures. To
enable observation of the liquid layer under the
bubble and the dry area at its centre we used
ground surfaces and a glass prism: see Figs. 5
and 6.

««««««« Cone
e+ e |48 OF Observation

FiG. 6. Reversed effect of total reflection to detect presence of
microlayer.

Table 4. Growth rates of vapor bubbles

- Carbon
Liquid n-Heptane n-Heptane  n-Heptane np-Heptane Benzene tetrachloride
Heating surface Pyrex Pyrex Pyrex Perspex Pyrex Pyrex
Pressure (kN/m?%) 166 166 246 24-6 30 233
(mm Hg) 125 125 185 185 228 175
Boiling point (K) 318 318 329 329 319 308
Superheat (K) 18 19 18 16 26 27
J 0-105 011 0-107 0-095 0-108 007
MH"* 33 13 33 13 32 42
K 1080 1080 755 755 966 1900
P 40 40 38 38 44 55
REa J =0 45 47 33 29 40 45
I =4 71 74 52 46 63 71
Ry J =0 Z. - 06 55 51 41 32 48 52
Jo= iy R T 81 78 60 49 71 7%
R pservea BVETAZE 82 67 62 52 73 55
Individual values of R* 78-73-73-75-115-100  60-53-72-61 43-94-59  51-53-37 70-76 55
$5-92-50-70-92-78 62-84-75 61-51 46-70-55
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Plots of the squared bubble radius r? vs.
time yielded straight lines over the interval
1 mm < r, <2 mm for all bubbles, while for
many bubbles the straight lines extended beyond
this range. The slope of these lines yields the
growth constant. Table 4 presents the values
found and compares them with the results of
the approximate analytical calculation, equation
(37). The resulis of the numerical solution,
obtained from Fig. 3 with Z, = 06, have also
been included. Z, = 0-6 is in the middle of the
range of values obtained from theory and
experiment. The value of J', defined in (44), is
clearly different for each individual bubble.
Putting J' = 1J, we obtain reasonable agreement
between the calculated growth rate and the
average of a number of values obtained experi-
mentally.

It proved difficult to determine the value of the
dimensionless constant Z, from the ratio of
bubble radius and dry area radius with (29).
Measurement from the films of the dry area
radius is useful only in the range I mm < r; < 2
mm where the bubble boundary has passed at
the velocity corresponding to r, = kt*. In this
range effects of surface roughness and constant
electrical heat input do not play any role.
Many bubbles, especially on Perspex, leave the
heating surface before the dry area has grown
to this size. Straight-line plots of r7 vs. t were
obtained, by drawing a line matching the plotted
data as closely as possible. See the plots of Fig. 7
for the bubble in Fig. 5. Its slope, divided by
the slope of r? vs. t yields o7. The values obtained
for Z,, between 03 and 0-8, are presented in
Table 5. Their order of magnitude agrees with
the value 09 predicted in the appendix. From
more direct measurements by Cooper and
Lioyd [11] values between 0-4 and 07 can be
calculated. Although the spread in the experi-
mental values is too large to reach a final
conclusion, it appears that the experimental
values are lower than the theoretical one. This
can be understood when it is considered that
the experimental values of Z, are all calculated
on the assumption that the original thickness of
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FiG. 7. Bubble radius and dry area radius as a function of
time. Bubble of Fig. 5. Time between frames 288 ps.

the microlayer is equal to the total amount of
liquid evaporated. Formally the amount carried
away by the residual flow should be added to
this.

Note that Table 4 shows the bubble growth
rate to be hardly dependent on the value of the

parameter
MH - & (Asps S)
Apicy

whereas the value of ;2 in Table 5 is much
larger on Perspex than on Pyrex. This indicates
that the thermal properties of the solid have a
small influence on the bubble growth rate but
affect dry area radius considerably, which
confirms the arguments at the beginning of
section §.

7. CONCLUDING REMARKS

The end of the phase of rapid growth remains
an interesting subject for further study. At the
latest the end will come when one of the last
two conditions in Table 1 is no longer satisfied.
An earlier end is also possible. When growth
slows down, at the moment when the influence
of the radial component of a temperature
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Table 5. Experimental values of Z,,

Liquid n-Heptane n-Heptane Benzene Carbon tetrachloride
Heating surface Pyrex Perspex Pyrex Pyrex
Pressure (kN/m?) 24-6 166 300 233

(mm Hg) 185 125 228 175
Boiling point (K) 329 318 319 308
Superheat (K) 18 19 26 27
J 0-107 0-11 0-108 0-07
MH™* 33 13 32 42
K 755 1080 966 1900
P 38 40 44 55
RimwithJ =1J 60 78 71 78
RYyrves 60 71 7% 70 55
oy %Mmed 105 ~160 19 182 31
1, from Fig. 4 it ~33 10 17
Z, froma, 0-34 ~0-78 045 044 0-39
Z, theor. ~0-9 ~09 ~09 ~09

gradient initially present in the liquid becomes ACKNOWLEDGEMENTS

noticeable, separation of the boundary layer
could occur. The decrease in dynamical pressure
resulting from the reduction in growth rate will
further increase the relative importance of
surface tension and gravity. According to all
these mechanisms the bubble will lose contact
with the solid surface, the main heat source for
growth. Following the reduction in growth rate
growth will thus stop almost entirely.

When effects of surface tension are important
the self-similar solution is not applicable. As
the observed growth is adequately described
by the self-similar solution, surface tension
cannot play an important role in it. This contrasts
with a suggestion by Cooper and Lloyd [11]
that surface tension influences the flow near
the junction of the hemispherical and microlayer
surfaces.

It should be noted that the same treatment as
given above will also apply to bubble growth at
the heating surface in a binary mixture if the
surface tension gradient, resulting from the
concentration gradient along the microlayer,
does not induce strong flow in it. The equations
for this problem can easily be derived with the
help of Scriven’s paper [5].

Helpful suggestions by Professor G. K. Batchelor,
University of Cambridge, and valuable comments on the
manuscript by Professor D. A. de Vries and Dr. 8. J. D.
van Stralen of the Eindhoven University of Technology are
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course of this work.
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APPENDIX

In this appendix the flow field around the bubble is
studied more closely, the aim being to calculate the constant
Z, and to establish that separation of the boundary layer will
not occur outside the bubble.

We use cylindrical polar coordinates 7 and Z, the positive
Z-axis extending into the liquid perpendicular to the solid
surface. The components of the liquid velocity are §, and 7.
The continuity equation

o, b,

oF 7

ov
2 =0, Al
0z A1)

is identically satisfied when a stream function ¢, is intro-
duced such that

10
B, =t A2)
F 0%
and
1¢
b= — o2 (A3)
F or

For large values of R the boundary layer is confined to a
narrow region near the solid where

= O(R™¥). (A4)

~NUl ot

Order of magnitude considerations show that the pressure
distribution in the boundary layer is that of the main stream
region given by (10), r being replaced by 7 in view of (A.4).
The radial component of the Navier—Stokes equations then
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takes the form
1%, 1 6(0,,)2 L 100,00, 109,3%,
Fozor P\ oz 720z azoF 7 dF d3?

_ R ey re 13,
EPCAVIREESN B P CIFF

193 10 (106 1 O
F o FAF\F 02 r ooz

The relative order of magnitude of the terms, after the
brackets have been removed, is 1, 1, 1; 1, 1, 1, R"! 1, R~ !,
R~ 1. The small terms will be neglected.

The boundary conditions are

(A.5)

5, =0
5= 0 at =0, (A.6)
and
341
b, >0, = 55 at the top of the boundary layer (A.7)
r

where the velocity approaches that of the main stream.
Using the self-similarity of the solution we introduce new
independent variables

g = —, A8
i=1 (A.8)
- f_ 1R — z _ A9
n kt*(z ) (@)’ (A.9)
and a new dependent variable j(&, ) such that
3[*
@ = (GR) %@, 7). (A.10)

24
The boundary conditions (A.6) and (A.7) are satisfied when

j=0
5 at y =0, (A.11)
5_'1 =
and
o
——1 when n—- (A.12)
on
Equation (A.5) becomes
% 0% 9%j dj 1 6})2
428 U -2 424+ — (42
on? “a&ar, on? on &3 n
. . a3, o2
PRIP AL RS P L J]:O. (A.13)
On onda. 0d on? on?

Its form suggests a procedure of successive approximations
for large &%, Putting

n 1 n
j= Jfo(é) d¢ + ﬁjfl(i) df + ... (A.14)
0o

0
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the first of the conditions (A.11) is satisfied and (A.13)

becomes

a%, df, d2f1 df
2n— -2 2 2n

a + an o + + an + an

- sfx +4f0 -4 - Zﬁj’fo(f)df]
0
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which is equivalent to

df, 1df

Y 19 _, 4 A22
dq  addn (A.22)

n=0,

when terms containing higher powers of > are neglected.
Consider the solution (A.19) of the first-order equation. As

i*erfc(—n) > v for 5 - oo,
1 we have
+gl 4. =0 (AlL5) B(a0) =
in view of (A.17). But then
with the conditions "
- - - dB
fo=0, f,=0, ... at =0, (A.16) Bir) = — jd_nd"’ A23)
fo=1 f1=0, ... at 5= oo (A17) "
. and as
Owing to the last condition the solution will satisfy (A.12) A(0) = — B(0), (A24)
for all values of &. The zero order solution is o .
in view of condition (A.16), we have
b =1—rntierfcy (A.18) .
where i erfc 7 denotes the first integral of the complementary A(0) = J d_B dn. (A25)
error function of . The homogeneous part of the first-order dn
equations has the solutions i* erfc n and i* erfc (—n), these 0
being fourth integrals of the complementary error function.  From the conditions (A.20) and (A.21) we have
dB —a {1 — (1 — ntierfcn)® + interfcn(n + nti® erfcn — {nh)li* erfcn (A26)
dn i* erfc (—mid erfcn + i3 erfc (—n)i* erfen

The solution of the complete equation can be obtained with
the method of variation of the constants. Putting

f1 = A(m)i* erfc n + B(n)i* erfc (—n) (A.19)
we have the conditions
dA dB
~—i*tetfcn + —i*terfc(—n) =0 (A.20)
dn dy

dA4 dB
— —iderfey + —iderfc(—n)
dn dn

=445+ 2£jfo(€)df (A21)

0

which determine dA4/dn and dB/dn. With two constants,
determined by the boundary conditions, A(y) and B(y) can
then be found. To find the thickness of the boundary layer
and to determine whether separation will occur in the region
& > 1, it is not necessary to obtain the solution completely.

Separation of the boundary layer is characterized by
the reversal of the direction of flow at the solid surface. Thus
the point of separation is determined by the condition

o8
0z2) 220

Repeated partial integrations, combined with the use of
recurrence relations and differentiation formulas for the
integrals of the complementary error function, then yield
with (A.25)

A(0) = 248  27=n (A27
T15 8 27)
With (A.24) and (A.20) we have from (A.19)
d A0
(A) = —24(0)3erfc (0) = — —(—) (A.28)
d?] n=0 3n
The condition for separation (A.22) is then
" 1 /(248 27n 0 A5
ig*\15 8 /)" (A.29)

A point of separation is therefore not found in the region
& > 1 outside the bubble. The result * ~ 0-63 from (A.29) is
itself meaningless because the analysis is valid outside the
bubble only.

The displacement thickness #* of the boundary layer is
defined by the expression

(A.30)

r.m

a
= (dvt)t Svr'":) ~ % dn,
[}



1430

which can be rewritten, if only zero and first-order terms in

373 are retained, as

f i
h* = (‘MO{ (1 —fo- 5&) dn

[

‘ 1
= (dvpp)t [w terfendn —

Oty

%
X } {Ai*erfcn + Bi*erfc (—n} dr}]. {A31)
o
A partial integration of the second integral [, vields

Iy

I

j {Ai* erfcn + Bi* exfc(—n) dy
0

It

— [Ai® erfcy — Bi® erfc (— 1Y
1 dA dB
+ - 5{— iderfcn — ™ i*erfc (— ;1)} dn, (A.32)
n

10 J {dn
[

with the use of the recurrence relations and (A.20). As
B{co) = 0 and i° erfc{oo) = 0, using also (A.24) and {A.21]),
we obtain

.
1, = 24(0)i* erfc {0} — Ej {1~ (1 — ntierfen)?
o
+ interfon{n + nt ifedfcn — {n¥)} dy
9 4.2 496
Y A A33
“% (4 5 n) ( )
The final result is

h* 1
~ int (1 + o 0»042)

o (A34)

to the first order in 1;&°.

The zero-order term for the thickness of the boundary
iayer can also be obtained from a very simple calculation.
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The component of the Navier-Stokes equation along the
solid surface can be simplified to a diffusion equation for
the difference between actual and main stream velocity, as
was done by Olander and Watts (16). But such an approxi-
mation, which as they assume is valid for small values of time,
is valid only far away from the bubble for large &, in view
of (A.8).

Any residual velocity of the liquid captured under the
bubble will be small, as the liquid in the boundary layer is
decelerated by the adverse pressure gradient outside the
bubble and stopped entirely by the friction forces once
under the bubble where no pressure force acts on the liquid.
Effects of a residual velocity are automatically taken into
account, if the displacement thickness of the boundary
iayer, by definition the hypothetical thickness of the layer
at standstill in a further undisturbed flow field, s used to
calculate the volume of liquid captured under the bubble.
If the liquid in the microlayer is assumed to be at standstill
the displacement thickness of the boundary layer must be
equal to the microlayer thickness, which is given by

ho(ry) _ Zﬂ
(4v,t) \/2’
when (11) is rewriiten with the help of (8) and (9). Comparing

{A.35) and (A.34) at & = 1 we find that Z, will be of the order
of magnitude

(A.35)

Z, ~ 09, (A.36)

Following this approach consistently, we consider in the
analysis the liquid in the microlayer to be at rest. Changes in
the original thickness of the microlayer, given by (11), will
then occur through evaporation only.

Without evaporation, the thickness at each point would
be given by (11) when r, is replaced by 7. We did not solve
the problem of residual flow, but it is easy to see that it will
cause a slight change in the radial distribution of the liquid
volume under the bubble. Towards the outer edge the
microlayer thickness will be larger than that given by (11),
towards the centre of the bubble it will be slightly smaller.
Neglect of the residual flow thus invelves the neglect of a
decrease in thickness additional to the decrease by evapora-
{108,

CROISSANCE RAPIDE D'UNE BULLE DE VAPEUR A L’'INTERFACE LIQUIDE-SOLIDE

Résumé—La croissance rapide des bulles de vapeur a Pinterface liquide-solide comme dans les liquides

bouillants est décrite par une solution d’affinité. Une bulle croit comme une hémispheére, le carré du

rayon augmentant proportionnellement au temps, tandis qu'une fine couche de liquide quitte le solide

sous la bulle. L’évaporation de cette couche contribue a la croissance et créé une région séche en son

centre. La théorie est illustrée par quelques résultats expérimentaux. En appendice on présente une analyse

de Ia couche limite sur la surface solide hors de la bulle. On montre que la séparation de cette couche
limite ne peut se produire ce qui explique la présence d'une microcouche.
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DAS SCHNELLE WACHSTUM EINER DAMPFBLASE AN EINER FLUSSIG-FESTEN
GRENZFLACHE

Zusammenfassung—Das schnelle Wachstum von Dampfblasen an einer flissig-festen Grenzfliche, wie
beim Sieden von Fliissigkeiten, wird mit Hilfe einer Ahnlichkeitslosung beschrieben. Eine Blase wichst
als Halbkugel, das Quadrat des Radius wichst dabei proportional mit der Zeit, wihrend gleichzeitig
eine diinne Flissigkeitsschicht auf der festen Oberflache unter der Blase bestehen bleibt, Die Verdampfung
von dieser Schicht tragt zur Wachstumsrate bei und erzeugt eine trockene Fliche in ihrem Zentrum.
Die Theorie ist mit einigen experimentelien Ergebnissen veranschaulicht worden. Im Anhang wird eine
Analyse iiber die Grenzschicht an der festen Oberfliche ausserhalb der Blase durchgefithrt. Es wird
gezeigt, dass eine Ablosung dieser Grenzschicht nicht auftritt, was die Anwesenheit der Mikroschicht
erklart.

bBICTPBIII POCT MAPOBOTO HY3bIPHKA HA IIOBEPXHOCTHU
PABJEJIA HUAKOCTb — TBEPJIOE TEJO

ABgoTanus—DBHICTPHl POCT Ny3HPHKOB MApa HA MNOBEPXHOCTH DAsiesia KUAKOCTD —
TBEpA0E TET0, KAK, HANPUMED, B KUNMAINX KUFKOCTAX, ONNCHBASTCA YPABHEHHEM aBTOMOJE-
JILHOCTH.

ITysnipéx pactér kak noxycdepa, KBagpaT paguyca KOTOPOH YBeIUUUBAETCA OPONOPUMQ-
HAQJIBHO BPEMEHH, TOT/IA KAaK TOHKHUIl CJIOH 3RUIKOCTH OCTAETCA HA TBEPRON MOBEPXHOCTH MOJ
OysHPbKOM. Mcrmapenue M3 9TOro CJIOA CO3KAET CyXYH 08uacTh B ero LEHTpe W BIMAET Ha
CKOpOCTb POCTA IY3HpbKA. TeopuA MITIOCTPHPYETCA HEKOTOPHIMH HHKCIEPHMEHTAILHEIMU
AAHHHMA. B NpHIOMEHMH aHAINTHYECKH DACCMOTpPEeH MOrDAHMYHBIA CJIOW Ha TBEpHOH
MOBePXHOCTU 33 NpefenaMu myseipbka. IlokaszaHo, 4TO OTPHIB 3TOr0 NOIPAHHYHOIO CJIOA

He IPOUCXOTMT.
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